
On the solar surface, we can observe certain 
structures, e.g., coronal loops, evolving in time as 
they are illuminated by charged particles spinning 
along the magnetic field lines. 
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A VARIATIONAL APPROACH TO SELF-ORGANIZATION IN CONDUCTING FLUIDS

Background

A central challenge in modern fluid dynamics is to understand how radically disparate phenomena all 
emerge from the same basic governing equations. Coherent structures often form on a global scale, yet 
the equations themselves prescribe only interactions at a local level. How does such large-scale 
organization emerge, and can it be predicted in a given system?

We will address this question in magneto-hydrodynamics (MHD), a rich system where a magnetic field 
both drives and constrains the motion of the fluid. This nonlinear coupling can produce striking large-
scale structures, for example the global magnetic field of our own planet [1]. This project will focus on 
model configurations where the magnetic field is braided in a complex pattern, because numerical MHD 
simulations of such systems by the PI and collaborators have shown striking self-organization [2-4]. 
These simulations were initially motivated by solar coronal loops (with line-tied boundary conditions), but 
we have shown that such self-organization also occurs in periodic systems akin to the toroidal fields of 
laboratory plasmas [3]. Similar behaviour has been found in simulations of “knotted” magnetic 
configurations [5-6].

Objectives

We will use a variational approach to test the hypothesis that approximate conservation of field line 
helicity determines the organized structures that form in rapidly relaxing MHD systems. This is a 
novel and unexpected idea, because field line helicity (which quantifies the linkage of each magnetic 
field line) was previously thought to play no role in resistive MHD. It was thought to be totally destroyed 
by even a small amount of resistivity [7]. However, careful analysis of MHD simulations by the PI and 
collaborators has found that, though field line helicity is not conserved on each individual magnetic field 
line, neither is it destroyed overall. Rather, it is observed to be efficiently redistributed throughout the 
domain, in a manner consistent with organization of the structure [8], as illustrated in Figure 1.

Following these observations, we propose to go a step further: could this “quasi-conservation” actually 
explain the self-organization? In other words, is there a causal link?

Figure 1. A braided MHD simulation [from 8], showing magnetic field lines before and after self-
organization into two twisted flux tubes. Contours on the cross-section show the initial and final 
distributions of field line helicity (FLH), which differ due to magnetic reconnection.

If such a causal link is found, this would give fundamental new insight into the behaviour of these 
complex MHD systems. We will test this directly by taking advantage of modern computational 
capabilities in dynamically-constrained optimization. Namely, we will test whether the organized 

Numerical experiments of braided magnetic field show 
the complexity of the magnetic field reduces as it 
relaxes due to a small amount of resistivity (Yeates et 
al. 2010, 2015).  

Here is one example. The entangled magnetic fields are 
shown throughout the volume with the projection of 
FLH (a topological measure) shown at the bottom 
plane:(a) initial state, (b) final state.
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We take into account the major physical 
effects in the 3D simulations, and then 
construct an effective 2D model. 

Fluid viscosity

Effective Lorentz force 

Pressure term 

Advection It not only makes the 
computation more efficient, we 
can also test which physical 
effects are dominant in terms 
of changes in the topology in 
this reduced model. 

The function f(x,y,t) 
now contains all the 
topological information.
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Fluid viscosity

Magnetic induction Magnetic diffusion

… + other physical 
effects  FLH (topological measure)

Density variation

Effective magnetic field

Incompressibility
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We see this 2D model is able to capture the main topological feature of the original 3D 
simulation. The initially highly braided pattern (left) is able to relax to a simple state (right), 
which corresponds to the two oppositely twisted flux tubes. 

We are in the process of testing more initial conditions, also to verify if another equivalent 
flow could lead to a similarly relaxed state. Ultimately, we hope the results of this 
effective 2D model can be applied not only to study resistive magnetic relaxation but also 
fluid mechanics in general, for example, the optimal transport theory. 


